Login | Member benefits | Join us
Researchers PDFs
AIFST Fresh Produce Food Safety Summit
Aphids & Viruses
Broccoli Export Seminar
Carabid beetles as sustainability indicators
Clubroot - Nursery Access
Clubroot - Nursery Cleaning
Clubroot - Nursery Contamination
Clubroot - Nursery Design
Clubroot - Nursery Monitoring
Clubroot - Nursery Response
Clubroot - Nursery Sources
Hangzhou Foods
IPM - approach to Potato crops
IPM - approach to practice change
IPM - Potato/Tomato Psyllid
Lettuce Anthracnose Management
Native Plants - Food Safety
Native Plants - Food Standards
NY9406 Downy Mildew on seedlings - factsheet
NY9406 Downy Mildew on seedlings - report
NY9406 Downy Mildew on seedlings - review
NY97011 Downy Mildew on seedlings - extension
NY97011 Downy Mildew on seedlings - notes
Parsley Disease Handbook
Parsnip Variety Trials
Phytochemical composition of food
Phytochemicals and Healthy Foods
Reclaimed water - risk model
Reclaimed water use in Victoria
Recycled Water Quality - Lettuce
Sclerotina - Lettuce Conference 2002
Strategies for Control of Root Rot in Apiaceae Crops
Summer Root Rot in Parsley
Thrips & Viruses
Tobamoviruses
Vegetable Disease Program
Vegetable Diseases in Australia
Vegetables Viruses
VG00013 Leek Diseases
VG00016 Environmental Performance
VG00026 IPM Eggplant & Cucumber
VG00031 Peas - downy mildew & collar rot
VG00031 Peas - Downy Mildew - metalaxyl resistance
VG00034 Capsicum & Chillies - weed control
VG00044 Clubroot - Applicator design
VG00044 Clubroot - Chemical control
VG00044 Clubroot - Implementing a control strategy
VG00044 Clubroot - Managing outbreaks
VG00044 Clubroot - Nutritional amendments
VG00044 Clubroot - Strategic application
VG00044 Clubroot – Introduction
VG00044 Clubroot – Limes and liming
VG00044 Clubroot – Prevention & Hygiene
VG00044 Clubroot – Understanding Risk
VG00044 Total Clubroot Management
VG00048 Alternate fungicides for sclerotinia control
VG00048 Brassica green manure conference paper 2004
VG00048 Brassica Green Manure Update 16
VG00048 Brassica Green Manure Update 18
VG00048 Diallyl Disulphide - DADS - trials
VG00048 Lettuce - Sclerotinia biocontrol
VG00048 Lettuce Sclerotina - Biocontrols
VG00058 Pea - Collar Rot
VG00069 Cucumber & Capsicum diseases
VG00084 Beetroot for Processing
VG01045 Bunching Vegetables - disease control
VG01049 Compost - Benefits
VG01049 Compost - Choosing a Supplier
VG01049 Compost - Getting Started
VG01049 Compost - Introduction
VG01049 Compost - Safe Use
VG01049 Safe Use of Poultry Litter
VG01082 Broccoli Adjuvant Poster
VG01082 Broccoli Head Rot
VG01096 Article - White Rot research
VG01096 Integrated Control of Onion White Rot
VG01096 Poster - Alternative fungicides
VG01096 Poster - Diallyl Disulphide - DADS
VG01096 Poster - Trichoderma biocontrol
VG01096 Poster - Trichoderma optimisation
VG01096 White Rot - Spring Onions
VG02020 Capsicum - Sudden Wilt
VG02035 Capsicum - virus resistance
VG02105 Vegetable Seed Dressing Review
VG02118 White Blister
VG03003 Lettuce - Varnish Spot
VG03092 Lettuce - Shelf Life
VG03100 Retailing Vegetables - Broccolini®
VG04010 Maximising returns from water
VG04012 Hydroponic lettuce - root rot
VG04013 Brassica White Blister
VG04013 White Blister - Control Strategies
VG04013 White Blister - Race ID
VG04013 White Blister - Risk Forecasting
VG04013 White Blister - Symptoms
VG04013 White Blister - Workshop Notes
VG04014 Better Brassica
VG04014 better brassica - roadshow model
VG04014 better brassica - workshop notes
VG04014 Clubroot Guidebook
VG04014 Clubroot Poster
VG04015 Benchmarking water use
VG04016 Celery leaf blight - Poster
VG04016 Celery Septoria
VG04019 Nitrate & Nitrite in Leafy Veg
VG04021 Vegetable Seed Treatment
VG04025 Parsley Root Rot
VG04059 Diagnostic test kits
VG04061 White Blister - alternative controls
VG04061 White Blister - Workshop 2007
VG04062 Beetroot Study Tour
VG04067 IPM - Lettuce Aphid
VG05007 Onion White Rot - post plant fungicides
VG05008 IPM - Cultural Controls
VG05014 IPM - Native vegetation pt1
VG05044 IPM - Consultants Survey
VG05044 IPM - Grower Survey
VG05044 IPM - Lettuce Aphid Trials
VG05044 IPM - Lettuce Disease Poster
VG05044 IPM - Predatory Mites
VG05044 IPM - Project Summary
VG05045 Parsnip Canker
VG05051 Climate Change
VG05053 Rhubarb Viruses
VG05068 Baby Leaf Salad Crops
VG05073 Mechanical Harvesting
VG05090 Green Bean - Sclerotinia
VG05090 Rhizoctonia Groups
VG06014 Revegetation for thrip control
VG06024 IPM - Native vegetation pt2
VG06046 Parsley Root Rot
VG06047 Celery - Septoria Predictive Model
VG06066 LOTE Grower Communications
VG06086 IPM - Potential & Requirements
VG06087 IPM - Lettuce Aphid
VG06087 IPM - Toxicity testing
VG06088 IPM - Lettuce Aphid trials
VG06092 Pathogens - Gap Analysis
VG06092 Pathogens of Importance - poster
VG06140 Beetroot - colour quality
VG07010 Systemic aquired resistance
VG07015 Curcubit field guide
VG07070 Conference Notes 2008
VG07070 Foliar diseases
VG07070 Nitrogen & lettuce diseases
VG07070 Predicting Downy Mildew on Lettuce
VG07070 White Blister - Chinese Cabbage
VG07070 White Blister - Cultural Controls
VG07070 Workshop Notes - 2008
VG07070 Workshop Notes - 2010
VG07125 IPM - soilborne diseases
VG07126 Biofumigation oils for white rot
VG07126 New approaches to sclerotina
VG07127 White Blister - Alternative Controls
VG08020 Optimising water & nutrient use
VG08026 Pythium - field day
VG08026 Pythium - workshop 2010
VG08026 Pythium control strategies - overview
VG08107 - Carbon Footprint - workshop
VG08107 - Carbon Footprint part 1 - definitions
VG08107 - Carbon Footprint part 2 - issues
VG08107 - Carbon Footprint part 3 - calculators
VG08107 - Carbon Footprint part 4 - estimate
VG08107 - Carbon Footprint part 5 - users
VG08107 - Carbon Footprint part 6 - options
VG08426 Parsnip - Pythium Notes 2010
VG09086 Evaluation of Vegetable Washing
VG09159 Grower Study Tour- Spring Onions & Radish
VG96015 Carrot Crown Rot
VG96015 Carrot Defects - Poster
VG97042 Export - Burdock, Daikon and Shallots
VG97051 Pea - ascochyta rot
VG97064 Greenhouse Tomato and Capsicum
VG97084 Green Bean - white rot
VG97103 Celery Mosaic Virus
VG98011 Carrot - Cavity Spot
VG98048 Lettuce - Adapting to Change
VG98083 Lettuce - rots & browning
VG98085 GM Brassicas
VG98093 Microbial hazards - review
VG98093 Safe vegetable production
VG99005 Quality wash water
VG99008 Clubroot - rapid test
VG99016 Compost and Vegetable Production
VG99030 Globe Artichokes - value adding
VG99054 Onions - Theraputic Compounds
VG99057 Soil Health Indicators
VG99070 IPM - Celery
Victorian soil health
VN05010 Folicur - alternative carriers
VN05010 Onion White Rot - Fungicides
VN05010 Onion White Rot - summary
VX00012 Metalaxyl breakdown
VX99004 Clean & Safe Fresh Vegetables
Whitefly & Viruses
Contact Details
AUSVEG VIC

PO Box 138
273 Camberwell Rd
Camberwell, VIC 3124

Tel: 0437037613
Fax: 03 9882 6722
Login or Sign up now!










Latest News

Bayer Vegetables Forum
Read more here...



Agricultural Trailers
Read more here...



Food Safety Proposal For Comment
Read more here...



Supermarket Cuts Veg Prices
Read more here...



Green Snail Alert
Read more here...


VG03003 Lettuce - Varnish Spot

Varnish spot, a disease affecting lettuce, is caused by the bacteria Pseudomonas cichorii, and results in brown lesions around the midrib of lettuce.

The discolouration often appears on concealed inner leaves, so lettuce with varnish spot can be transported to markets without the grower having any knowledge of the disease’s presence.

This project looked at the awareness of this disease across the lettuce industry in Australia through a survey and industry contact.

The main key findings of the project were;

  • The disease was reported in all states of Australia.

  • Growers surveyed were able to recognise the disease and a large proportion had the disease present on there properties most only occasionally.

  • Some growers reported that they only had minor losses due to this disease; others had whole blocks of lettuce rendered unmarketable.

  • Losses ranged from 0-20% in crop figures or up to $200,000 in monetary figures.

  • Growers generally thought that this disease was mainly seen in spring.

This report covers the activities undertaken during the period of the project from July 2003 till June 2005.

Authors
Andrew Watson Tony Napier

VG03003 Scoping study on the management of varnish spot in field and hydroponic lettuce - 2005
Download 119kb

Summary :

Varnish spot is a bacterial disease that causes brown lesions around the midrib on lettuce (Lactuca sativa L.) leaves quite commonly under outside leaves which show no symptoms.

Varnish spot of lettuce is caused by Pseudomonas cichorii. The disease has been found in other countries and is common in Australia.

This project was established to find the awareness and seriousness of this disease across the lettuce growing regions of Australia.

Growers and others in the industry were visited, met with at industry information nights and meetings or called by telephone to obtain information on varnish spot.

In response it was found that the majority of growers had seen the disease and were able to distinguish it from other bacterial rots such as those caused by Erwinia.

All states had growers that were affected by varnish spot. It was previously thought that only some states had this disease.

It appears that varnish spot can affect a lettuce sporadically or totally wipe out a planting.

One hydroponic grower had also recorded heavy losses as a result of infection by Pseudomonas cichorii.

Processors reported that it was an issue for lettuce processed for hearts, with one processor recording a 3% loss from this disease.

Seed companies agreed that most states had the disease with one company having problems with varnish spot on some varieties in 2005.

Previous research on this disease shows that it can infect through stomata and epidermal hairs.

The bacteria can survive in lettuce residue so crop rotation has been suggested as a control option.

But reports through this project have indicated that varnish spot has occurred on blocks that have not had lettuce for up to three years.

Other sources of inoculum include seeds, transplant and insects. Some growers in the survey considered water sources as a possible source of bacteria; this has been supported with overseas information.

Other hosts of P. cichorii include chicory cabbage, cauliflower, celery tobacco and endive. Numerous weed hosts could also exist.

Recommendations :

  • Water used for seedlings should be tested for varnish spot bacteria.

  • Transplants should be inspected for signs of disease and infected transplants destroyed.

  • Irrigation should be carried out to minimize leaf wetness duration and especially reduced to a minimum within three weeks of harvesting.

  • Fields are rotated for 4-5 years between lettuce crops or other hosts of the pathogen causing varnish spot.

  • Hosts should not be planted in adjacent fields.

  • Plant less susceptible lettuce varieties.

  • Lettuce should be planted in fields with well-drained soil and good air movement to promote rapid drying.

Acknowledgements :

Thanks are expressed to staff at the National Vegetable Industry Centre, Yanco for the assistance with this project.

Growers and others in the industry for the excellent feedback and cooperation.

Also to Ric Cother and Dorothy Noble (NSW DPI-Orange Agricultural Institute) for assistance with bacterial identifications.

This project has been facilitated by NSW Department of Primary Industries and Horticulture Australia Limited (HAL) in partnership with AUSVEG and has been funded by the National Vegetable Research and Development Levy.

The Australian Government provides matched funding for all HAL’s R&D activities.


^ Back to top    

Features...
ViewNext

Member Benefits

Group actions unite growers as a single voice with more influence than any individual could achieve alone. AUSVEG VIC membership is a cost effective... Read more...

Site supporters
Events
Web design Melbourne | Web Agent AUSVEG VIC 2017